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Landau—de Gennes model for nonuniform configurations in nematic liquid crystalline elastomers
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Through a mean field theory, an elastic free energy describing the nonuniform elastic textures observed in
nematic elastomers, is proposed. To construct it, an order parameter that describes the nematic-isotropic phase
transition through the change of the elastic properties of the strain tensor at the transition point is introduced.
The resulting elastic free energy can be written in a form that resembles the Frank free energy of the usual
nematic liquid crystals, becoming equivalent to it when the size of the elastic nematic domains is a fixed
constant along the whole sample. Using this approach, a model for nonhomogeneous deformations found by
Godinhoet al. [Macromolecules33, 7675(2000] in elastomeric thin films of urethane/urea is proposed.

DOI: 10.1103/PhysReVvE.69.061704 PACS nuni®er61.30.Gd, 61.30.Jf, 64.70.Md.

I. INTRODUCTION |ﬁ = ILﬁij +(I, - Ii)ninj (3)
_ When de Gennes suggestddZ] that the introduction of yefines the chain shape parallel and perpendicular to the
rigid and anisotropic molecules along the polymeric chain,niayia| directord. The explicit values of, andl, determine
could induce a nematic character to a polymeric sample, th,e g|astic anisotropy of the material. Equati@ contains
interest in nematic elastomefE) became widespread and he essence of the anisotropic properties of the nematic elas-
many_expenmental an_d theorethal investigations have Shedtﬁmers, making explicit its uniaxial character and, at the
new light on the physical behavior of these mater[@15.  gme time that it reveals a privileged elastic direction given
The model commonly used to study their thermodynamical, yhe director direction, it also describes the amount of
behavior assumes t_hat their macroscopic ela_stlc propertigg; stic anisotropy along the direction parallel and perpen-
are strongly determined by the entropy associated with th@jc|ar tori. Ahead, a generalization of this equation will be
geometry of the long chain characterizing the polymeric,qe to construct a unique order parameter that gathers these
molecules. For isotropic polymers, the interactions betweeg, . aspects of the theory.
different chains or between elements inside a chain are ig9- \yith a direct application of Eq(1), considering all chain

nored, and the random walk shape assumed by the chagyqqqrations as equiprobable and using a microcanonical
composing the macromolecules is taken as the main one rexcemple S=—k In P (R°), the corresponding free energy
sponsible for their macroscopic elastic properties, Confemn%ecomes ’ o

an entropic character to the corresponding statistical mechan-

ics [6], whose probability distribution function becomes de- 1

termined by the Gaussian form that describes the aleatoric Er= EchT In P,(R°) +c, (4)
end-to-end correlation function of the polymeric chain. For
the case of NE this idea was generaliZ&d5], being as-
sumed that the probability distribution of an anisotropic
cross-linked NE, in the limit of a long chain, is given by an
anisotropic Gaussian form,

whereN. is the number of cross-links per unit volume and
is a constant.
When the director is uniformly oriented, the thermody-
namics resulting from these principles becomes analytically
very simple and efficiently describes the observed phenom-
3 Roo)-1Re logy[3]. Neverthel hen it is applied t if
ROI9)R°|, (1)  enology[3]. Nevertheless, when it is applied to nonuniform
2L : ! director configurations, it acquires unexpected and challeng-
ing aspects. For example, for nonuniform NE, the fundamen-
where R is the mean distance between the cross-linkedal elastic constantghose corresponding to the splay, twist,
points that, due to the anisotropy of the medium, satisfies thand bend elastic constants of the usual nematic liquid crys-

Po(R%) ~ (DefIZ]) 2 eXp[—

relation tals would be negative, suggesting the nonexistence of a
lower bound to the free enerdy’]. However, this finding
1 needs to be better investigated since, as mentioned above, the
(RR)) = §£|ﬁ, (2)  free energy from which it has been deduced disregarded the

interactions between the different parts of the elastomer, be-
ing restricted to the description of entropic forces. So, when
properly considered, these nonincluded interactions could
modify the conclusions since, as it was pointed out by Ter-
entjev, Warner, and Verve}7], “one cannot forget that the
basic uniform rubber elasticity and the underlying conven-
*Electronic address: simoes@uel.br tional Frank nematic elasticity were not taken into account”

where £ is the chain contour lengthx) is the statistical
mean ofx, and

1539-3755/2004/68)/0617049)/$22.50 69 061704-1 ©2004 The American Physical Society



M. SIMOES AND A. DE CAMPOS PHYSICAL REVIEW E59, 061704(2004)

in the assumptions that lead to Ed). Thus, as nonuniform point. To accomplish this task, the elastic anisotropy ac-
configurations are easily found in NE, being obtained, forquired by the system at the nematic phase will be the chosen
example, through the simple application of an externally in-property. The reason for this choice follows from the physi-
duced deformatiofi8], it is assumed that these structures cancal meaning of Eq(3); where different amounts of deforma-
be described by some staliler at least metastable¢heory. tions are observed when forces with the same intensity act
The aim of this paper is to fill this gap by constructing aalong perpendicular directions. This observation is the es-
mean field theory. It is important to emphasize that, as a rulesence of the difference between the NE order parameter that
the results of a theory formulated from a microscopic pointwill be constructed here and that usually defined for the nem-
of view are more reliable than the ones coming from a meamtic liquid crystals. To be precise, for NE the knowledge of
field theory. But, as usual, the elaboration of a microscopi¢he direction that characterizes, at each point, the uniaxial
theory that takes into account all relevant physical aspectdeformation—the director direction — is not enough to fully
involved in a physical process can be extremely difficult, if characterize the elasticity of the material. It is also necessary
not impossible. In the present case, we know that the microto know the position dependent intensity of deformations or
scopic arguments used to construct the probability distribuelongations along different directions when, for example, ex-
tion function given by Eq(4) cannot take care of all aspects ternally induced deformations are imposed along these direc-
of the phenomenology involved in elastomeric physics. Estions. The realization of this task is the aim of this work.
sentially, Eqg.(4) results from the resemblance of the poly-
meric chain with a random walk, and the entropic reasoning
used to construct it cannot remain applicable when other
contributions are taken into account. For example, the Frank The strain tensor is the mathematical object that com-
free energy describing the aligning interaction between theletely depicts the elasticity of a material undergoing defor-
nematic micelles is usually deduced from a Landau-denations. Elastic properties like symmetries, inhomogeneties,
Gennes expansion of the free energy in terms of an ordesnisotropies, or the behavior of the material under externally
parameter9], being therefore a mean field theory. Conse-induced stress are described by it. Consequently, it is usual to
quently, when such nematic contribution is added to@y. expect that an order parameter describing those phase tran-
the theory will lose its microscopic character, becoming alsasitions presenting changes in the elasticity of a material
a mean field theory. could be expressed by the strain tensor. In order to see how
As the nematic-isotropic phase transition involves a symthis can be done, one should consider two infinitely close
metry change, where a privileged direction for deformationgyoints A and B of an undeformed body, whose squared dis-
arises at each point of the sample, it is usual to describe tance is given by12]
through the construction of an order parameter expressing
this change of order and, in terr_ns_of this _order parameter, use (d9)? = (dxg)? + (dx)2 + (dxg). (5)
the Landau—de Gennes prescription to find a free energy ex-

p(eﬁsir]oangch la” order parameti( E“’St be in accorr]danwhen the body is deformed, these points are led to new
with the basic elastic properties, which muat express the  ,qjtions given by andB* and, if the deformation does not

anisotropic properties given in E(B), (b) express the nem- 5, se ryptures, the new squared distance becomes
atic interaction between the nematic domains, éoydde-

scribe the basic elasticity of the elastomer. The construction , .

of this order parameter é the aim of the first section of this (8 )2 =[d0 + ) P+ [d(xa + uo) I+ [d(xs + pa)1?= (5
paper. In the second section, the constructed order parameter + 2u5)dx; dx;, (6)

will be used to postulate, through standard procedures, a

Landau—de Gennes free energy that could be used to deduggerep,, u,, andus are the components of the deformation
the nonuniform elastic properties of the medium. In the |aS'R/ector,zZ, which is assumed as a continuous function of the
section, the resulting theory will be used to discuss somgosition, being infinitely differentiable, and; is the strain

A. Strain tensor as an order parameter

known results found in anisotropic elastomgt§)]. tensor, given by11,12
Il. THE ORDER PARAMETER i = }(M LOM 19_Uk¢9_uk> 7)
Yo2ldy  dx ax ax/)’

To describe the elastic properties of the NE, it will be
assumed that an infinite number of microscopic elastic do- As it stands, the rules that lead E&) to Eq.(6) are not
mains produces the observed macroscopic collective behavestricted to describe deformations, it considers a larger set
ior. Initially, only one of these elastic domains will be stud- of transformations that conduct the poimkssand B to the
ied. Afterwards, through the introduction of an order pointsA® andB". That is, these equations can also be used to
parameter and the consequent construction of an elastiescribe, for example, uniform translations and uniform ro-
mean field free energy, the thermodynamics resulting frontations, which are not deformations. So, when using(By.
their interacting collective behavior will be proposg]. As  we must be sure that we are really describing deformations.
usual, the construction of such order parameter will be dondhus we remember that, locally, the distance between two
through the choice of a physical property that expresses theeighbor points cannot remain the same after the action of a
symmetry change at the nematic-isotropic phase-transitiodeformation. Consequently, the difference
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Se?=(ds)? - (d9)?=2u;; dx dx;, (8) 1

! : Qij =G| mjj — 55”'2 Mooy (10
which measures the local deformations of the elastic domair}S an order parameter. which is written in terms of the strain
must be non-null. From now orde will be called local de- P ’

formation. or simple deformation. and. as mentioned abovetensor, and describes the nematic-isotropic phase transition.
' P ' ' ' In order to give further insight to the meaning of this

%Iluiltaggc dg;%'?iebretgst);];ﬁerg?;ﬂileﬂjs;?n'gﬁ? ;?(;n‘ig;m?htéonsorder parameter, Iet.us rememper that it i§ usual to assume
transition from an isotropic to a uniaxial elastomer creates %hhz (\a/)c()llztriréczfotfhaenellgsﬂ m??sgﬁzgigor?xig?lgigizt g{gﬁgr\éﬁz
privileged direction for deformations leading to a change INjirection are accompanied .by combensating contractions

the behaw.or ofuy when the transition pplnt IS crosged. along the other directions, resulting in a global deformation
Moreover, it follows from Eq(8) that the points undergoing . .
! _ that does not change the total volume of the material. This
an equal amount of deformatiof¥e=consj stay along a - ; . . .
condition can be written in a local and differential form.

conic curve, whose geometrical forngspherical, elliptical : : . :
) X . ’ ' . Consider ifferential volum lement given WV
hyperbolica) are determined by the eigenvalues of the stralncO sider a differential volume element give

tensor. So, from the point of view of the symmetries by:dx dydz that, after a deformation, becomes given
rotation, three possibilities can be considered: three equ by dV' = (dx+duy) (dy+duo) (dz+daeg) = (1+ g9 (1+u20) (1

eigenvalues, which correspond to isotropic deformations; \‘;33)3)( dy dz By negriectmlg Ferms;] of h|ghford|er, we have

one different and two equal eigenvalues, which correspong. =dV(1-+uy). So, the relative change of volumay, is

to uniaxial deformations; and three different eigenvaluesg'ven by

which correspond to biaxial deformations. In this paper we (dV' -dV)

will restrict our study to the transition that happens when a = T4V = Miis (11

system with three distinct eigenvalues changes to a system

with only two distinct eigenvalues; from an isotropic to athe trace of the strain tensqs;, which, for any tensor, is

uniaxial phase. Of course, there are other possibilities foknown as an invariant under coordinate transformatjags

changing symmetries, but they will not be studied here. ~ An immediate consequence of this result is that the usual
To show how an order parameter can be constructed frorassumption that the deformation does not cause changes in

the strain tensor, we consider the de Gennes argument whithe volume of the elastomer can be put in the form

supports that if a generic tensgy represents some physical

property, which being isotropy, becomes uniaxial through a ki =0, (12

phase-transition, thef®] which from now on will be taken as the local condition for
the volume invariance under deformations of the elastomer.

1 Consequently, by imposing this condition in the order param-
Qij= G(Xij - 55”2 XW> (9 eter given by Eq(10) we found thatQ; becomes
Qij = Guij» (13

will be taken as an order parameter describing the correshowing that, aside from the multiplicative constahtthe
sponding nematic-isotropic phase transition, whérés an  strain tensor coincides with the order parameter of the vol-
arbitrary constant. To see th; is really an order param- ume preserving the elastomeric nematic-isotropic phase tran-
eter, consider, at each point of the sample, a system of coosition.
dinates wherey;; is diagonal. In the isotropic phase all ei-
genvalues ofy;; are equal and, thereforeQ; is null.
However, in a nonisotropic phase, at least one eigenvalue
becomes different from the other two and, consequeQly, Here, a detailed study of the forms that the uniaxial strain
becomes non-null. As the nullity of a tensor does not depentensor u;; can assume will be discussed. Its explicit form,
on the system of coordinates, this property is maintained itontaining the symmetry changes determined by the elasto-
all coordinate systems. Consequently,@s becomes non- meric nematic-isotropic phase transition, will be postulated.
null when the system passes through the isotropic-nemati&s mentioned before, at the isotropic phase, the strain tensor
phase-transition point, it satisfies the requirements to benust have three equal eigenvalues, while at the uniaxial
taken as an order parameter. phase, one of them must become distinct from the other two.
Now, we use the fact that at the nematic-isotropic phasdo the different eigenvalue will correspond, at each point, an
transition, the symmetries described by the strain tepgor eigenvector whose direction gives the nematic director, being
must change dramatically; at the isotropic phase it describethe relative amount of the elastic anisotropy measured by the
isotropic deformations, while at the nematic phase it mustatio between the eigenvalue of this direction and any eigen-
describe the uniaxial elasticity acquired by the system. So, aglue of any other degenerated direction. Furthermore, con-
wi; has three equal eigenvalues at the isotropic phase, and taary to what happens with a molecule or micelle of a normal
least one different at the uniaxial phase, it can be used as threematic liquid crystal, where this ratio is constant along the
propertyy;; that included in Eq(9) leads to the construction entire sample, in elastomeric materials, the corresponding
of an order parameter. Consequently, ratio need not be constant; at differently deformed regions it

B. Uniaxial strain tensor
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will assume different values and, as this is an elastic property 1/ g 1 )

acquired at the phase transition, the order parameter must wii = Av= > _§5ii + 25(_g+ 7), (18)
also describe it. That is, such an order parameter must mea-

sure the order acquired with the introduction of a main di-the parameteg can be expressed as

rection for deformation as well as the respective amount of

anisotropic elongation along that direction. g= 7"~ 24, (19

S0, if a strain tensor with the form showing thatg is fixed by the deformation of the elastic

1/ g domain. Under these conditions the eigenvalues of the sys-
Mij =5\~ g‘sii + 77 (14 tem become
is assumed, then it can describe a phase transition with the E =1 7+ 20 _, _mt2M
properties described above. Hefgis a non-normalized po- ! ro2 3
sition dependent vector argdis a position dependent param-
eter whose meaning will be discussed later. To prove this 2
. . . n°+ 2Av
assertion, one must consider those points that, through the E;=2- , (20)
application of this expression to E), transforms an unde- 3

. * 2
formed sphere into an equally deformed surfat®s)” \yhich reveals a connection between the eigenvalEgsand

=cte In addition, one must assume that the resulting surfacg1e length of the eigenvectaj. Consequently, the length of

will stay along the set of points=(x,y,z). Then, according = .o pe ysed to study the anisotropy of the system. That is,
to Eq.(8), the resulting set of transformed points will satisfy assuming thaty? is position dependent, we can take on the

the relation assumption that the deformation of the elastic domains is not
9 homogeneous.
(8j + mij) XX = (1 - 5) 8j + mim; [xx;=cte. (15 As a further simplification, notice that when the deforma-

tion preserves volume\v=0, it is found that
Consequently, whem=0 the equally deformed surface re- o,
mains a sphere. Otherwise, whep~ 0, the corresponding g9=7,
surface becomes a conic curve. In order to verify whether 'fmplying that the strain tensor, which under this condition

corresponds to a uniaxial ellipsoid, the matrix appearing in.gincides with the order parametfEq. (13)], assumes the
Eqs. (6) and (15), Ay =(8;+2)=(1-g/3)&j+myy, must  orm

be considered. It can take a diagonal form, and its set of

eigenvectors,{V;}, defines the directions of the principal 1 7
strains(strain axe} while its set of eigenvalue$E;}, defines Qi = pij = > E‘Sii o ’71')’
the corresponding principal extension. A straightforward cal-

culation shows that the set of eigenvaly&s of the matrix ~ where the constar® has been fixed with the valug=1.

(21

Ajj is given by the set This order parameter is similar to the order parameter
which describes the nematic-isotropic phase transition of the

E,=1 _9' E,=1 _9, E,=2 _9’ (16) usual nematic liquid crystals, as expected. But, contrary to
3 3 3 what happens in that case, the order parameter here is not

restricted to the description of the alignment of the system
along the director direction; ag* need not be constant along
the sample, the order parameter that we have constructed

showing that there are two degenerated eigenvaktgsk,.
Likewise, the corresponding eigenvectdpg;}, are given by

Vi=(= 7,07, Vo=(- 0) also describes the intensity of the domain deformation along
! TSy V2 My Tho ) the director direction. It is important to notice that the non-
. constancy ofz?, and its presence in the order parameter,

V3= 7= (o, m) = 7, (17)  arises naturally from the theory that we have developed. The

hich Is that th = effectively def h origin of this result stays in the utilization of the strain tensor
which reveals that the vectoy effectively deforms a sphere  ,5"he physical property utilized in the construction of the

into a uniaxial ellipsoid, wher&;=7 gives the local direc- order parameter. Nevertheless, it is easy to obtain a normal-

tion of its long axis, while the degenerated directions perpeng oy girector directioriN) from the theory: it is sufficient to

dicular to it,\*/1 and\72, give the direction of the smallest axis make
of the ellipsoid.

The eigenvalue$E;} that measure the relative amount of o
anisotropy of the nematic domains are functions of the pa- Ni=—=, (22)
rameterg. This finding reveals the meaning of this param-
eter. For example, wheg=0 the system is isotropic and, as which will lead to an order parameter restricted to the de-
g becomes non-null, a uniaxial phase is found. Furthermorescription of the uniaxial elastomer orientational properties.
as the trace of the strain tensaf, given in Eq.(11), mea- Hence the order parameter given by E2jl) encompasses in
sures the relative variation of volume of an elastic domain, the same mathematical object, the main direction for defor-
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mations, the director direction, and the relative amount oklongationsz;, and —» are indistinguishable, having the
such deformation. same energy.

To complete the development of the tools usually utilized There are in EQq(25) tensorial coefficients of zero, sec-
in the study of nematic materials, a scalar order parametaynd, third, fourth, and sixth orders to be determined. A
will be defined. Following the form given by E@21), the  simple explicit form for each of these tensors is exhibited
scalar order paramet€ris defined through the usual relation below.

1 1 So, the simplest first order tensor is given by
<§ 7]2501,8 - 770177,8> = Q(géaﬁ - nanB) (23)

wheren fixes a normalized direction at the point under con-
S|d§rat|on anc{x).glves the statlstlcall average of the randomyynere the index over the tensof .r] gives the rank of the
variablex. A straightforward calculation shows that tensor andC;, i=0,1,2, ... is ageneric notation for constants
3 1 that will be used along the forthcoming developments. Simi-
Q:—(<;7.ﬁ>2——,72>_ (24)  larly, the simplest second-order tensor that can be con-
2 3 structed from the natural objects mentioned above is given

This scalar order parameter describes simultaneously tHeY

amount of “order” along the direction and the intensity of

the elongation of the domain along such direction, as ex- Tﬁ = Cy7i7; + Ca8; + Canyeiy- (27)
pected. Furthermore, it reduces to the usual nematic order

7=1, is considered. of second order, such & and 7€;, and the possibility that

Concluding, as the vectof is not normalized and the it can be the result of product of lower-order tensors, such as

deformation described by the strain tensor given at(®4) 7 7; have been considered. _

is uniaxial, this tensor is apt to be used in an order parameter USing a similar reasoning, it can be seen that the third-
describing the elastic nematic-isotropic phase transition. Fiorder tensor has the form

nally, Eq. (14) is similar to the expression used in E®)

and, as demonstrated in this study, such resemblance is Notr %, = Cye;y + C/AY, + CoAL, + CoA% + CioAY + CAY,
accidental; in both cases they describe the affine transforma- 3

tion that changes spheres into ellipsoids. + C1oA (28

T =Com; (26)

where A} =TITF.
Ill. MEAN FIELD ELASTIC ENERGY Similarly, the tensors of fourth and sixth orders are given
The Landau—de Gennes approach will be utilized to get Qy
mean field elastic free energy for the NE. It will be assumed
that in the neighborhoods of the nematic-isotropic phase Ti‘}kl = clgTilAjskI + CMTJ.lAﬁ<I + ClsTﬁA% + clﬁTllAis}k
transition, the elastic free energy can be expressed through a

212 212 212
polynomial expansion in terms of the order parameter and its *+ CarTij Tia + CagTicTj + CaoTii T, (29)
derivatives, i.e.,
and
Fei = Eo + @y uipj + bjjig i 9;Qu + € Qjj + dijia Qi Qui

+ LiijaQij + Mijiimn(3Qjid) (61 Qumpn) (25) T ﬁklmn = C21AﬁkAI3mn+ CZZAﬁIAEmn"' ngAi?meAi "
where the expansion coefficierds, Cjj, Lyij, Dij, dij, and + 3 A3 3 A3 3 A3
Mijmn are tensors that depend on the parameters of the CoAnAdm + CosAiAimn+ CoiarA n
theory,E, is a constant, ang, is the deformation imposed to + CoAiAlim + CooAimAlkn + CaoA 1nAm
the sample along the direction which has already been 3 3 ) 5o s 5 o
defined by Eq(6). This theory will be complete when an + C3oAmrAkt CarAijAG AN+ Ca2Aj ArAin
explicit form for all these tensorial coefficients is carried out + 202 N2 4 oo AZA2A2 4 272 p2
using the symmetries of the theory. Hence it will be assumed CsaAg ‘;”A'zm Cas '2 2' 2”‘” CSSA"; ”‘; '2
that + C36AAIAIm + C37AIAATn T C3gAinAiKAR

(a) each one of these coefficients must be a function of 22,2 2.2 2 2.2 1o
7, &, ande;y. As 7 is the unique natural vectorial object of * CaoAinAjAIm + CaoAIAmAn + CarAI AR A
the theory the necessity of its presence in these tensorial +C42AﬁnAﬁA§n+ C43A§1Aj2|A§m+ C44Ai2mAjZnA§|
coefficients is immediate. Furthermore, the possible exis-
. : : . + C A2 A2 AL (30)
tence of symmetries undergoing changes of indexes in each 457 m Kl
of these coefficients relies on the assumption that they must
also be a function of; and €;; and By putting together all the above expressions, through alge-
(b) due to the nature of the elastic deformation, thebraic computation, it was found that
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Er= Kl - Kz V(AP + K T )2 e
Foo™ 7~ R V7 2137777 S e
L e
+5K33[77X(VX77)‘K31V(772)] +§K32(V(772)) e e e —
1 1 1 P
> g - - > T Bt ey e
+_K2:‘{77(V X 77)]2+_K21(V X 77)2+_Ql772 - ey e _:_’—_—::_‘
2 2 2 — _“ —-—g..____ﬂ =
1 1 . (1. e e e e
+ZQZ774+§K41(K42_ 7]2)V'<5V(772)‘77(V'7])_7] L\;‘____ e e ——
mnt TR T n‘—'L-—_ -
. 1 1 e e
X (VX 79) |+ Zeln 7)?+ Zaln X 7)? T —————
( 77)) 5 €0l 7) Sl X 7) : e S —

+Pu(fa- DV - 7+ Pl (- V) 7P = Al - (7 X (V X 7))]
a2 FIG. 1. Texture observed, under a polarizing microscope, when
+ps(e - ) (7-Vop) (31 a stretching external force is applied on a membrane of urethane/

whereK. is the new elastic constants that are function of the-ré2 along the direction indicated by the arrow; its length indicates
ij

¥ . : 20 um. The stripes are extended along the direction of the external
(Cj:é?c’)r?‘r?;i?l,‘lseli’n?lbsgg %ZX taerrengl]le \(;V?;ﬁ;ﬁg?;Ste(;ﬁ;r)gggoiﬁa_force, having a well-defined periodicity along the perpendicular di-
. p . y . rection.(Courtesy of Professor Dr. M. H. Godinho.
tions of the elastic domains. A procedure similar to the one

used in the development that goes from E2f) or (30) to ) )
Eq. (31), and with the details of the calculations, can petomer has in fact a nematic character; however, there are

found, for example, if13] and[14]. some non-nematic systems that present periodic patterns
Let us put forward some comments on the meaning of thigvhen submitted to an externally induced tensidf]. Since

free energy by examining the conditions for its stability andthe results that will be presented next have a strong agree-

its form when the elongation of the elastic domains is uni-Ment with the experimental observations, the results found in

formly frozen along the entire sample. The stability of thethis section can be taken as an indication of the uniaxial

elastic deformations requires that nature of the elastic phase observed in the urethane or urea
membrane. Although it recognizes that the nematic nature of
Ki1=0, Ki3=0, K33=0, Kgy$p=0, Ky=0, the urethane or urea membrane may not be confirmed by
forthcoming experimental research, this section remains as a
Kyy=0, Q,=0. nontrivial exercise of application of the theory developed
above.

Once(),>0, there are no constraints d¥. So it can as- Godinhoet al.[10] have observed that when a thin film of
sume negative values. Later, an experiment which suggesfgethane/urea is submitted to an alternating sequence of de-
that (3, <0, implying that the corresponding structures arefqrming mechanical stresses, an unusual succession of struc-
metastable, is discussed. Furthermore, when the elongatiqQes is observed in the sample. Before the first application of
of the elastic domains becomes uniform, assuming the samg, externally induced deformation, the elastomer seems to be
value at all points of the sampl@?— const, orV(7%) =0, the  isotropic and slightly translucent. But, once a mechanical
above elastic energy becomes formally identical to the Franktress is applied, the film becomes transparent with a set of
free energy of a nematic liquid crystal becoming, thereforefextures observable by a polarizing microscope. A remark-
restricted to the description of an orientational interactionable aspect of this process concerns the behavior and form
between neighboring elastic domains. As the difference beassumed by these textures when the mechanical stress is
tween these two free energies is given by these local lengtswitched on and off. As it is shown in Fig. 1, when the elastic
variations of the elastic domains, we must conclude that Edfilm is stretched, a periodic structu¢stripeg parallel to the
(31) considers at least three kinds of contributions to theaxis of the extending direction and with a wave vector per-
energy stored in the elastic domains; the energy stored ipendicular to the stretching direction is observed. These
these local variations of elongations, the energy stored in thstripes are similar to those observed by Kundler and Finkel-
interaction between the elements giving the orientational ormann in homogeneous aligned elastoni8is Nevertheless,
der to the elastomer, and the interaction between them.  afundamental difference has been found. When the mechani-
cal stress is removed, the elastomer does not return to its
initial condition. Even with its undeformed dimensions ap-
parently restored, a new set of structufieands arises in the

In this section, the theory developed above will be used tsample, and a texture consisting of periodic, long, black,
describe a nonhomogeneous pattern formation phenomengarallel, fine equidistant lines perpendicular to the direction
found by Godinhcet al. [10] in an elastomeric thin film of of the axis of the previous applied mechanical stress is ob-
urethane/urea. It is important to observe that there are naterved(see Fig. 2. Furthermore, this process is cyclic; when
concluding experimental evidences showing that this elasthe membrane is elongated again, the bands perpendicular to

IV. PATTERN FORMATION
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'W‘ will be considered. Notice that in that equatignappears
having various different orders. For example, the term

coupled byK,,, (ﬁ X 7)?, is of a second order if, while the

term coupled byK,5, (77-V(7?))?, is of a sixth order. Our
. approximation restricts our study to the linear part of the
M differential equations describing the theory. The effect of the
nonlinear terms will be considered in a forthcoming paper.
‘ So, considering the lowest order i, and ignoring the
l ‘ | ‘ boundary effects described by the term coupled<hy, we
(AL Lt have

FIG. 2. Texture observed, under a polarizing microscope, whenEg = 1Kll(V 72+ 1K21(V X 7)%+ an + 150(,u 7)?
a stretching external force has been removed from the membrane 2

that have had a texture like the one described in the Fig. 1. These 1 . o a2 L -

new bands, observed in a situation where there is not an external + 561(,“ X 7])2+ Pl -V -+ ZPZ[(M : V)772

force, are perpendicular to the old ones being also one-dimensional

?nd pt_arlodlc. The _Ilne indicates the direction of the preexisting Al (7% (VX 7)]. (32)
orce; its length indicates 2Am. (Courtesy of Professor Dr. M. H.

Godinho) As the deformation externally imposed to the membrane is
fixed along a constant direction, it can be assumed fhat

the external force disappear, and the stripes parallel to the(ux,0,0). Minimizing the resulting equation with relation

external force reappear. However, when the externally into 7 it can be shown that

duced deformation is again reduced to zero, the process is

1)< Py 82%) _ (8277x 8277x)

also been observed that the presence of one of these struc- tox2 Ka IxXy dxz 21 97

tures does not prevent us from observing the other, Fig. 3,

where an interval of external forces where they coexist can  + u,(p; - 2p2)<—¥ + 772) + (et + Q) =0, (33)

be seen. That is, as the induced extension is being reduced, J

and the stripes parallel to it are disappearing, the perpendicu-

lar bands begin to appear and, along a certain interval, they (9277 P k- 1)<&277X .\ (92772) Kk (ﬁx . @)

live together. _ _ ay 217 ™ axy  dyz 2 52 " G2
Next, the use of the elastic energy proposed in(2§) to

describe the textures found by Godinkb al. [10] is dis-

cussed. In this study, only the lower order terms of the theory * 1Py~ 2p2) s+ (€t 0) =0, (34)
k 827/z+(K Tk 1)<8277x Py ) _K, ((92772 82772>
: Moz A7 gxz  gyz ax>  gy?
3
+ p(p1— 2p2) *+ nleuz+ Q1) =0 (35

e s
e

i
"'

give the solutions that minimize E@32). This is a set of
linear coupled second-order differential equations containing
first-order derivatives that, independently of any boundary
condition, damp all oscillations presented by the solutions of
the system, eliminating any possibility of extended patterns.
Consequently, to describe textures these first-order deriva-
tives must be null, that is

T Lol

el

sreti 4AY™

L |
"
)
*
- 8
T
-

amy Im_
. . ay dz

FIG. 3. Texture observed, under a polarizing microscope, show-
ing a combination of both textures observed in Figs. 1 and 2. To
produce this texture the elastomer has been initially stretched in M _
such a way that the texture of Fig. 1 is obtained. Afterwards, the ay -
external force has been gradually reduced and, before it reaches at a
null value, the two textures are found living together. The length of
the arrow indicates 20 mniPublished with authorization of Proof. % - (36)
Dr. M. H. Godinho) iz
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As all these terms depict polarizations of the NE, the im- 4
position of these conditions is equivalent to affirm that, in the 2
sample the geometry acquired by the induced textures ask;*
sumes a configuration that prevents any local polarization.

As shown further in this study, this is the origin of the one-
dimensional regularity observed in these patterns. So, by
substituting these conditions in the above-differential equa-
tions, that system of differential equations becomes

Stripes . Bands
& N
- K 772)( + 1 + euud) =0, (37) Stripes
a X and
Bands D
Pn, Fn, P, ¢ %\ .
7 By 9N & 0
- K21< + + ) + 9y(Qy+ eud) =0, (38)

axe  ay? 97
FIG. 4. Graphic representation of Eqg40) and(43) where the
region where stripes and bands live together is detached.

52772 62772 &2772) 2

—+ + + 7,0 + =0. (39
21( %2 ayz 97 7/Qy ElMx) (39 e Mz)

— €0

That constitutes, in this approximation, a set of differen- k>2<= K—X (40)
tial equations describing uncoupled elastic deformations. 1
These deformations are coupled by a different set of elastiag g result, as the externally induced deformatjop in-
constants. The deformatiopy is coupled througfiK;y, which  creases, the periodiciti, diminishes in such a way that
according to Eq(31) describes a kind of splay deformations \yhen it becomes greater tharf>K/ €, the real solutions
in the nematic elastomer. Whiley, and 7, are coupled pecome hyperbolic and no periodicity aloBgwill be ob-
through K,,, which describes a kind of twist deformation, served; exactly what has been observed in the Godinho ex-
meaning that the deformations occurring in the sample havgeriment.
two different topologies. Likewise, the constants coupling’ | order to study the behavior of the deformatiopsand
the imposed global elastic deformation with the deformation% described by Eqg38) and(39) the boundary conditions
vector, ¢, and €;, also present the same differenegbeing  4cting on the system must be considered. A detailed study of
the susceptibility attributed for, and €, the susceptibility  the poundary conditions acting on the system on these con-
attributed forz, and 7,. In summary, the effects of the ex- itions can be found ifig]. It will be assumed, due to the
ternally imposed deformatiop, are determined by the rela- connection of the membrane to itssborders,x=0 andx

tive values off)y, €, €, Ky, andKy; and, as they come from = peing not tied along ity andz borders we must have
different basic elastic deformations, different topologies for

the corresponding patterns will be observed. Let us study the any_dm,
relative values of these constants by imposing that the result- Ix = 97 =0 (41
ing theory may describe the Godinho effect. First, it has been
found that even when the external force vanishes, some te’féading to
tures are still observed on the bulk along the direcéigrihat
is 7,#0 when,u)2(—>0. As, under these conditions, E@2) P
becomes KZlEZY + (K + €uf) = 0. (42)
_ KM&Z—??; + Q7= 0, These equations show that, as the stability of the system

requires thaK,,>0 the periodicities observed along tBg
direction, the stripes, can be explained if it is admitted that
and the stability of the system requires thaf;>0, the ¢ <0. With these hypotheses, and making the charfges
unique way to admit the observation of the bands periodi-— -K, with K>0, €, ——¢; with >0, and >0 it is
cally distributed along thes, direction whenu,—0 is to  found that Eq(38) becomes
assume tha€); <0. So, by makind); —-K, K>0 we have

that P _
KZlEZY + (K- eud) =0,
-K ﬁ(—7](K—f =0
Moxz ™ Okt =5 which has a non-null solution, with a periodicity given by
Furthermore, to explain the disappearance of the periodicity 61M>2<— K
of 7, alongé, asu? increases, we must haeg>0. So, once K= 2K (43)
the elastomer is distended, the periodicity alongéhéirec- 21
tion will be given by In Fig. 4 a superposition of the graphs generated by Egs.
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(40) and (43) is shown. This figure shows that there is a scribed by the theory proposed above. Results show a good
range of values of the external force where stripes and bandmyreement between the theory and the experiment.
can be found together, exactly what has been found experi- As a final conjecture, let us make a brief digression on the
mentally. range of the theory that has been developed in this study.
Notice that the theory here developed has a unique funda-
mental requirement: the existence of a phase transition pre-
V. FINAL REMARKS AND CONCLUSION senting an isotropic-uniaxial symmetry change. Cited as an

The main result of this paper has been the elaboration of %xample, _nowhe_‘re along th? dgv_elopment of the theory has
mean field elastic theory describing properties of a uniaxiaf '€ nematic origin for the uniaxiality presented by one of the
nematic elastomer. The construction of an order parameté?hases of the sample been us_ed. Con_squently,_the theory
for the elastomeric nematic-isotropic phase transition had'&y pe applicable to_e_very eIaSt'C. materlal_ with an _|sotrop_|c-
been essential to such an approach. This order paramel’é?'ax'al phase transition, not being restricted to isotropic-

generalizes the corresponding order parameter of the usugfmatic phase transitions.

nematic liquid crystals, which, besides the description of the ACKNOWLEDGMENTS
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