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Through a mean field theory, an elastic free energy describing the nonuniform elastic textures observed in
nematic elastomers, is proposed. To construct it, an order parameter that describes the nematic-isotropic phase
transition through the change of the elastic properties of the strain tensor at the transition point is introduced.
The resulting elastic free energy can be written in a form that resembles the Frank free energy of the usual
nematic liquid crystals, becoming equivalent to it when the size of the elastic nematic domains is a fixed
constant along the whole sample. Using this approach, a model for nonhomogeneous deformations found by
Godinhoet al. [Macromolecules33, 7675(2000)] in elastomeric thin films of urethane/urea is proposed.
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I. INTRODUCTION

When de Gennes suggested[1,2] that the introduction of
rigid and anisotropic molecules along the polymeric chain
could induce a nematic character to a polymeric sample, the
interest in nematic elastomers(NE) became widespread and
many experimental and theoretical investigations have shed a
new light on the physical behavior of these materials[3–5].
The model commonly used to study their thermodynamical
behavior assumes that their macroscopic elastic properties
are strongly determined by the entropy associated with the
geometry of the long chain characterizing the polymeric
molecules. For isotropic polymers, the interactions between
different chains or between elements inside a chain are ig-
nored, and the random walk shape assumed by the chain
composing the macromolecules is taken as the main one re-
sponsible for their macroscopic elastic properties, conferring
an entropic character to the corresponding statistical mechan-
ics [6], whose probability distribution function becomes de-
termined by the Gaussian form that describes the aleatoric
end-to-end correlation function of the polymeric chain. For
the case of NE this idea was generalized[3–5], being as-
sumed that the probability distribution of an anisotropic
cross-linked NE, in the limit of a long chain, is given by an
anisotropic Gaussian form,
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where RW o is the mean distance between the cross-linked
points that, due to the anisotropy of the medium, satisfies the
relation
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where L is the chain contour length,kxl is the statistical
mean ofx, and

l i j
o = l'di j + sl i − l'dninj s3d

defines the chain shape parallel and perpendicular to the
uniaxial directornW. The explicit values ofl' andl i determine
the elastic anisotropy of the material. Equation(3) contains
the essence of the anisotropic properties of the nematic elas-
tomers, making explicit its uniaxial character and, at the
same time that it reveals a privileged elastic direction given
by the director directionnW, it also describes the amount of
elastic anisotropy along the direction parallel and perpen-
dicular tonW. Ahead, a generalization of this equation will be
used to construct a unique order parameter that gathers these
two aspects of the theory.

With a direct application of Eq.(1), considering all chain
configurations as equiprobable and using a microcanonical
ensemble,S=−k ln PosRod, the corresponding free energy
becomes

EF =
1

2
NckT ln PosRod + c, s4d

whereNc is the number of cross-links per unit volume andc
is a constant.

When the director is uniformly oriented, the thermody-
namics resulting from these principles becomes analytically
very simple and efficiently describes the observed phenom-
enology[3]. Nevertheless, when it is applied to nonuniform
director configurations, it acquires unexpected and challeng-
ing aspects. For example, for nonuniform NE, the fundamen-
tal elastic constants(those corresponding to the splay, twist,
and bend elastic constants of the usual nematic liquid crys-
tals) would be negative, suggesting the nonexistence of a
lower bound to the free energy[7]. However, this finding
needs to be better investigated since, as mentioned above, the
free energy from which it has been deduced disregarded the
interactions between the different parts of the elastomer, be-
ing restricted to the description of entropic forces. So, when
properly considered, these nonincluded interactions could
modify the conclusions since, as it was pointed out by Ter-
entjev, Warner, and Vervey[7], “one cannot forget that the
basic uniform rubber elasticity and the underlying conven-
tional Frank nematic elasticity were not taken into account”*Electronic address: simoes@uel.br

PHYSICAL REVIEW E 69, 061704(2004)

1539-3755/2004/69(6)/061704(9)/$22.50 ©2004 The American Physical Society69 061704-1



in the assumptions that lead to Eq.(4). Thus, as nonuniform
configurations are easily found in NE, being obtained, for
example, through the simple application of an externally in-
duced deformation[8], it is assumed that these structures can
be described by some stable(or at least metastable) theory.

The aim of this paper is to fill this gap by constructing a
mean field theory. It is important to emphasize that, as a rule,
the results of a theory formulated from a microscopic point
of view are more reliable than the ones coming from a mean
field theory. But, as usual, the elaboration of a microscopic
theory that takes into account all relevant physical aspects
involved in a physical process can be extremely difficult, if
not impossible. In the present case, we know that the micro-
scopic arguments used to construct the probability distribu-
tion function given by Eq.(4) cannot take care of all aspects
of the phenomenology involved in elastomeric physics. Es-
sentially, Eq.(4) results from the resemblance of the poly-
meric chain with a random walk, and the entropic reasoning
used to construct it cannot remain applicable when other
contributions are taken into account. For example, the Frank
free energy describing the aligning interaction between the
nematic micelles is usually deduced from a Landau–de
Gennes expansion of the free energy in terms of an order
parameter[9], being therefore a mean field theory. Conse-
quently, when such nematic contribution is added to Eq.(4)
the theory will lose its microscopic character, becoming also
a mean field theory.

As the nematic-isotropic phase transition involves a sym-
metry change, where a privileged direction for deformations
arises at each point of the sample, it is usual to describe it
through the construction of an order parameter expressing
this change of order and, in terms of this order parameter, use
the Landau–de Gennes prescription to find a free energy ex-
pression. Such an order parameter must be in accordance
with the basic elastic properties, which must(a) express the
anisotropic properties given in Eq.(3), (b) express the nem-
atic interaction between the nematic domains, and(c) de-
scribe the basic elasticity of the elastomer. The construction
of this order parameter is the aim of the first section of this
paper. In the second section, the constructed order parameter
will be used to postulate, through standard procedures, a
Landau–de Gennes free energy that could be used to deduce
the nonuniform elastic properties of the medium. In the last
section, the resulting theory will be used to discuss some
known results found in anisotropic elastomers[10].

II. THE ORDER PARAMETER

To describe the elastic properties of the NE, it will be
assumed that an infinite number of microscopic elastic do-
mains produces the observed macroscopic collective behav-
ior. Initially, only one of these elastic domains will be stud-
ied. Afterwards, through the introduction of an order
parameter and the consequent construction of an elastic
mean field free energy, the thermodynamics resulting from
their interacting collective behavior will be proposed[9]. As
usual, the construction of such order parameter will be done
through the choice of a physical property that expresses the
symmetry change at the nematic-isotropic phase-transition

point. To accomplish this task, the elastic anisotropy ac-
quired by the system at the nematic phase will be the chosen
property. The reason for this choice follows from the physi-
cal meaning of Eq.(3); where different amounts of deforma-
tions are observed when forces with the same intensity act
along perpendicular directions. This observation is the es-
sence of the difference between the NE order parameter that
will be constructed here and that usually defined for the nem-
atic liquid crystals. To be precise, for NE the knowledge of
the direction that characterizes, at each point, the uniaxial
deformation—the director direction — is not enough to fully
characterize the elasticity of the material. It is also necessary
to know the position dependent intensity of deformations or
elongations along different directions when, for example, ex-
ternally induced deformations are imposed along these direc-
tions. The realization of this task is the aim of this work.

A. Strain tensor as an order parameter

The strain tensor is the mathematical object that com-
pletely depicts the elasticity of a material undergoing defor-
mations. Elastic properties like symmetries, inhomogeneties,
anisotropies, or the behavior of the material under externally
induced stress are described by it. Consequently, it is usual to
expect that an order parameter describing those phase tran-
sitions presenting changes in the elasticity of a material
could be expressed by the strain tensor. In order to see how
this can be done, one should consider two infinitely close
pointsA andB of an undeformed body, whose squared dis-
tance is given by[12]

sdsd2 = sdx1d2 + sdx2d2 + sdx3d2. s5d

When the body is deformed, these points are led to new
positions given byA* andB* and, if the deformation does not
cause ruptures, the new squared distance becomes

sds*d2 = fdsx1 + m1dg2 + fdsx2 + m2dg2 + fdsx3 + m3dg2=sdi j

+ 2mi jddxi dxj , s6d

wherem1, m2, andm3 are the components of the deformation
vectormW , which is assumed as a continuous function of the
position, being infinitely differentiable, andmi j is the strain
tensor, given by[11,12]

mi j =
1

2
S ] mi

dxj
+

] m j

dxi
+

] uk

] xi

] uk

] xj
D . s7d

As it stands, the rules that lead Eq.(5) to Eq. (6) are not
restricted to describe deformations, it considers a larger set
of transformations that conduct the pointsA and B to the
pointsA* andB* . That is, these equations can also be used to
describe, for example, uniform translations and uniform ro-
tations, which are not deformations. So, when using Eq.(6),
we must be sure that we are really describing deformations.
Thus we remember that, locally, the distance between two
neighbor points cannot remain the same after the action of a
deformation. Consequently, the difference
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d«2 = sds*d2 − sdsd2=2mi j dxi dxj , s8d

which measures the local deformations of the elastic domain,
must be non-null. From now on,d« will be called local de-
formation, or simple deformation, and, as mentioned above,
all elastic properties of a material submitted to deformations
must be described by the strain tensor,mi j . For example, the
transition from an isotropic to a uniaxial elastomer creates a
privileged direction for deformations leading to a change in
the behavior ofmi j when the transition point is crossed.
Moreover, it follows from Eq.(8) that the points undergoing
an equal amount of deformationsd«=constd stay along a
conic curve, whose geometrical forms(spherical, elliptical,
hyperbolical) are determined by the eigenvalues of the strain
tensor. So, from the point of view of the symmetries by
rotation, three possibilities can be considered: three equal
eigenvalues, which correspond to isotropic deformations;
one different and two equal eigenvalues, which correspond
to uniaxial deformations; and three different eigenvalues,
which correspond to biaxial deformations. In this paper we
will restrict our study to the transition that happens when a
system with three distinct eigenvalues changes to a system
with only two distinct eigenvalues; from an isotropic to a
uniaxial phase. Of course, there are other possibilities for
changing symmetries, but they will not be studied here.

To show how an order parameter can be constructed from
the strain tensor, we consider the de Gennes argument which
supports that if a generic tensorxi j represents some physical
property, which being isotropy, becomes uniaxial through a
phase-transition, then[9]

Qij = GSxi j −
1

3
di jo

n

xnnD s9d

will be taken as an order parameter describing the corre-
sponding nematic-isotropic phase transition, whereG is an
arbitrary constant. To see thatQij is really an order param-
eter, consider, at each point of the sample, a system of coor-
dinates wherexi j is diagonal. In the isotropic phase all ei-
genvalues ofxi j are equal and, therefore,Qij is null.
However, in a nonisotropic phase, at least one eigenvalue
becomes different from the other two and, consequently,Qij
becomes non-null. As the nullity of a tensor does not depend
on the system of coordinates, this property is maintained in
all coordinate systems. Consequently, asQij becomes non-
null when the system passes through the isotropic-nematic
phase-transition point, it satisfies the requirements to be
taken as an order parameter.

Now, we use the fact that at the nematic-isotropic phase
transition, the symmetries described by the strain tensormi j
must change dramatically; at the isotropic phase it describes
isotropic deformations, while at the nematic phase it must
describe the uniaxial elasticity acquired by the system. So, as
mi j has three equal eigenvalues at the isotropic phase, and at
least one different at the uniaxial phase, it can be used as the
propertyxi j that included in Eq.(9) leads to the construction
of an order parameter. Consequently,

Qij = GSmi j −
1

3
di jo

n

mnnD s10d

is an order parameter, which is written in terms of the strain
tensor, and describes the nematic-isotropic phase transition.

In order to give further insight to the meaning of this
order parameter, let us remember that it is usual to assume
the existence of an “ideal” elastic deformation that preserves
the volume of the elastomer. That is, extensions along one
direction are accompanied by compensating contractions
along the other directions, resulting in a global deformation
that does not change the total volume of the material. This
condition can be written in a local and differential form.
Consider a differential volume element given bydV
=dx dy dz that, after a deformation, becomes given
by dV* =sdx+dm1dsdy+dm2dsdz+dm3d=s1+m11ds1+m22ds1
+m33ddx dy dz. By neglecting terms of high order, we have
dV* =dVs1+miid. So, the relative change of volume,Dy, is
given by

Dy =
sdV* − dVd

dV
= mii , s11d

the trace of the strain tensormii , which, for any tensor, is
known as an invariant under coordinate transformations[12].
An immediate consequence of this result is that the usual
assumption that the deformation does not cause changes in
the volume of the elastomer can be put in the form

mii = 0, s12d

which from now on will be taken as the local condition for
the volume invariance under deformations of the elastomer.
Consequently, by imposing this condition in the order param-
eter given by Eq.(10) we found thatQij becomes

Qij = Gmi j , s13d

showing that, aside from the multiplicative constantG, the
strain tensor coincides with the order parameter of the vol-
ume preserving the elastomeric nematic-isotropic phase tran-
sition.

B. Uniaxial strain tensor

Here, a detailed study of the forms that the uniaxial strain
tensormi j can assume will be discussed. Its explicit form,
containing the symmetry changes determined by the elasto-
meric nematic-isotropic phase transition, will be postulated.
As mentioned before, at the isotropic phase, the strain tensor
must have three equal eigenvalues, while at the uniaxial
phase, one of them must become distinct from the other two.
To the different eigenvalue will correspond, at each point, an
eigenvector whose direction gives the nematic director, being
the relative amount of the elastic anisotropy measured by the
ratio between the eigenvalue of this direction and any eigen-
value of any other degenerated direction. Furthermore, con-
trary to what happens with a molecule or micelle of a normal
nematic liquid crystal, where this ratio is constant along the
entire sample, in elastomeric materials, the corresponding
ratio need not be constant; at differently deformed regions it
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will assume different values and, as this is an elastic property
acquired at the phase transition, the order parameter must
also describe it. That is, such an order parameter must mea-
sure the order acquired with the introduction of a main di-
rection for deformation as well as the respective amount of
anisotropic elongation along that direction.

So, if a strain tensor with the form

mi j =
1

2
S−

g

3
di j + hih jD s14d

is assumed, then it can describe a phase transition with the
properties described above. Here,hW is a non-normalized po-
sition dependent vector andg is a position dependent param-
eter whose meaning will be discussed later. To prove this
assertion, one must consider those points that, through the
application of this expression to Eq.(6), transforms an unde-
formed sphere into an equally deformed surface,sds*d2

=cte. In addition, one must assume that the resulting surface
will stay along the set of pointsxW =sx,y,zd. Then, according
to Eq.(8), the resulting set of transformed points will satisfy
the relation

sdi j + mi jdxixj =FS1 −
g

3
Ddi j + hih jGxixj = cte. s15d

Consequently, whenhW =0 the equally deformed surface re-
mains a sphere. Otherwise, whenhW Þ0, the corresponding
surface becomes a conic curve. In order to verify whether it
corresponds to a uniaxial ellipsoid, the matrix appearing in
Eqs. (6) and (15), Di j =sdi j +2mi jd=s1−g/3ddi j +hih j, must
be considered. It can take a diagonal form, and its set of
eigenvectors,hVij, defines the directions of the principal
strains(strain axes), while its set of eigenvalues,hEij, defines
the corresponding principal extension. A straightforward cal-
culation shows that the set of eigenvalueshEij of the matrix
Di j is given by the set

E1 = 1 −
g

3
, E2 = 1 −

g

3
, E3 = 2 −

g

3
, s16d

showing that there are two degenerated eigenvalues,E1=E2.
Likewise, the corresponding eigenvectors,hVij, are given by

VW 1 = s− hz,0,hxd, VW 2 = s− hy,hx,0d,

VW 3 = hW = shx,hy,hzd ; hW , s17d

which reveals that the vectorhW effectively deforms a sphere

into a uniaxial ellipsoid, whereVW 3=hW gives the local direc-
tion of its long axis, while the degenerated directions perpen-

dicular to it,VW 1 andVW 2, give the direction of the smallest axis
of the ellipsoid.

The eigenvalueshEij that measure the relative amount of
anisotropy of the nematic domains are functions of the pa-
rameterg. This finding reveals the meaning of this param-
eter. For example, wheng=0 the system is isotropic and, as
g becomes non-null, a uniaxial phase is found. Furthermore,
as the trace of the strain tensormii , given in Eq.(11), mea-
sures the relative variation of volume of an elastic domain,

mii = Dy =
1

2
S−

g

3
dii + hihiD=

1

2
s− g + h2d, s18d

the parameterg can be expressed as

g = h2 − 2Dy, s19d

showing thatg is fixed by the deformation of the elastic
domain. Under these conditions the eigenvalues of the sys-
tem become

E1 = 1 −
h2 + 2Dy

3
, E2 = 1 −

h2 + 2Dy

3
,

E3 = 2 −
h2 + 2Dy

3
, s20d

which reveals a connection between the eigenvalueshEij and
the length of the eigenvectorhW . Consequently, the length of
h can be used to study the anisotropy of the system. That is,
assuming thath2 is position dependent, we can take on the
assumption that the deformation of the elastic domains is not
homogeneous.

As a further simplification, notice that when the deforma-
tion preserves volume,Dy=0, it is found that

g = h2,

implying that the strain tensor, which under this condition
coincides with the order parameter[Eq. (13)], assumes the
form

Qij = mi j =
1

2
S−

h2

3
di j + hih jD , s21d

where the constantG has been fixed with the valueG=1.
This order parameter is similar to the order parameter

which describes the nematic-isotropic phase transition of the
usual nematic liquid crystals, as expected. But, contrary to
what happens in that case, the order parameter here is not
restricted to the description of the alignment of the system
along the director direction; ash2 need not be constant along
the sample, the order parameter that we have constructed
also describes the intensity of the domain deformation along
the director direction. It is important to notice that the non-
constancy ofh2, and its presence in the order parameter,
arises naturally from the theory that we have developed. The
origin of this result stays in the utilization of the strain tensor
as the physical property utilized in the construction of the
order parameter. Nevertheless, it is easy to obtain a normal-

ized director directionsNW d from the theory; it is sufficient to
make

Ni =
hi

Îh2
, s22d

which will lead to an order parameter restricted to the de-
scription of the uniaxial elastomer orientational properties.
Hence the order parameter given by Eq.(21) encompasses in
the same mathematical object, the main direction for defor-
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mations, the director direction, and the relative amount of
such deformation.

To complete the development of the tools usually utilized
in the study of nematic materials, a scalar order parameter
will be defined. Following the form given by Eq.(21), the
scalar order parameterQ is defined through the usual relation

K1

3
h2dab − hahbL = QS1

3
dab − nanbD s23d

wherenW fixes a normalized direction at the point under con-
sideration andkxl gives the statistical average of the random
variablex. A straightforward calculation shows that

Q =
3

2
SkhW ·nWl2 −

1

3
h2D . s24d

This scalar order parameter describes simultaneously the
amount of “order” along the directionn and the intensity of
the elongation of the domain along such direction, as ex-
pected. Furthermore, it reduces to the usual nematic order
parameter when a fixed elongation of the elastic domain, i.e.,
h2=1, is considered.

Concluding, as the vectorhW is not normalized and the
deformation described by the strain tensor given at Eq.(14)
is uniaxial, this tensor is apt to be used in an order parameter
describing the elastic nematic-isotropic phase transition. Fi-
nally, Eq. (14) is similar to the expression used in Eq.(3)
and, as demonstrated in this study, such resemblance is not
accidental; in both cases they describe the affine transforma-
tion that changes spheres into ellipsoids.

III. MEAN FIELD ELASTIC ENERGY

The Landau–de Gennes approach will be utilized to get a
mean field elastic free energy for the NE. It will be assumed
that in the neighborhoods of the nematic-isotropic phase
transition, the elastic free energy can be expressed through a
polynomial expansion in terms of the order parameter and its
derivatives, i.e.,

Fel = E0 + aijmim j + bijklmi] jQkl + cijQij + dijklQijQkl

+ Lkij]kQij + Mijklmns]iQjkds]lQmnd s25d

where the expansion coefficientsaij , cij , Lkij, bijkl , dijkl , and
Mijklmn are tensors that depend on the parameters of the
theory,E0 is a constant, andmi is the deformation imposed to
the sample along the directioni, which has already been
defined by Eq.(6). This theory will be complete when an
explicit form for all these tensorial coefficients is carried out
using the symmetries of the theory. Hence it will be assumed
that

(a) each one of these coefficients must be a function of
hi, di j , andei jk. As hi is the unique natural vectorial object of
the theory the necessity of its presence in these tensorial
coefficients is immediate. Furthermore, the possible exis-
tence of symmetries undergoing changes of indexes in each
of these coefficients relies on the assumption that they must
also be a function ofdi j andei jk; and

(b) due to the nature of the elastic deformation, the

elongationshi and −hi are indistinguishable, having the
same energy.

There are in Eq.(25) tensorial coefficients of zero, sec-
ond, third, fourth, and sixth orders to be determined. A
simple explicit form for each of these tensors is exhibited
below.

So, the simplest first order tensor is given by

Ti
1 = C0hi; s26d

where the indexn over the tensorT ij ...
n gives the rank of the

tensor andCi, i =0,1,2, ... is ageneric notation for constants
that will be used along the forthcoming developments. Simi-
larly, the simplest second-order tensor that can be con-
structed from the natural objects mentioned above is given
by

Tij
2 = C1hih j + C2di j + C3hkekij . s27d

To construct this object, all linear combinations of tensors
of second order, such asdi j andhkekij, and the possibility that
it can be the result of product of lower-order tensors, such as
hih j have been considered.

Using a similar reasoning, it can be seen that the third-
order tensor has the form

T ijk
3 = C6ei jk + C7Aijk

3 + C8Aikj
3 + C9Ajki

3 + C10Ajik
3 + C11Akij

3

+ C12Akji
3 s28d

whereAijk
3 =Ti

1Tjk
2 .

Similarly, the tensors of fourth and sixth orders are given
by

T ijkl
4 = C13Ti

1Ajkl
3 + C14Tj

1Aikl
3 + C15Tk

1Aijl
3 + C16Tl

1Aijk
3

+ C17Tij
2Tkl

2 + C18Tik
2 Tjl

2 + C19Til
2Tjk

2 , s29d

and

T ijklmn
6 = C21Aijk

3 Almn
3 + C22Aijl

3 Akmn
3 + C23Aijm

3 Ak ln
3

+ C24Aijn
3 Aklm

3 + C25Aikl
3 Ajmn

3 + C26Aikm
3 Aj ln

3

+ C27Aikn
3 Ajlm

3 + C28Ailm
3 Ajkn

3 + C29Ai ln
3 Ajkm

3

+ C30Aimn
3 Ajkl

3 + C31Aij
2Akl

2 Amn
2 + C32Aij

2Akm
2 Aln

2

+ C33Aij
2Akn

2 Alm
2 + C34Aik

2 Ajl
2Amn

2 + C35Aik
2 Ajm

2 Aln
2

+ C36Aik
2 Ajn

2 Alm
2 + C37Ail

2Ajk
2 Amn

2 + C38Aim
2 Ajk

2 Aln
2

+ C39Ain
2 Ajk

2 Alm
2 + C40Ail

2Ajm
2 Akn

2 + C41Ail
2Ajn

2 Akm
2

+ C42Aim
2 Ajl

2Akn
2 + C43Ain

2 Ajl
2Akm

2 + C44Aim
2 Ajn

2 Akl
2

+ C45Ain
2 Ajm

2 Akl
2 . s30d

By putting together all the above expressions, through alge-
braic computation, it was found that
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EF =
1

2
K11f¹W · hW − K12hW ·¹W sh2dg2 +

1

2
K13„hW ·¹W sh2d…2

+
1

2
K33fhW 3 s¹W 3 hW d − K31¹W sh2dg2 +

1

2
K32„¹W sh2d…2

+
1

2
K23fhW · s¹W 3 hW dg2 +

1

2
K21s¹W 3 hW d2 +

1

2
V1h2

+
1

4
V2h4+

1

2
K41sK42 − h2d¹W ·S1

2
¹W sh2d − hW s¹W · hW d − hW

3 s¹W 3 hW dD+
1

2
e0smW · hW d2 +

1

2
ē1smW 3 hW d2

+ p1smW · hW d¹W · hW+ p2fsmW ·¹W dh2 − DlW · shW 3 s¹W 3 hW ddg

+ p3smW · hW dshW ·¹W h2d s31d

whereKij is the new elastic constants that are function of the
Ci’s, ande0, e1, p1, andp2 are the coefficients coupling the
deformations imposed externally with the internal deforma-
tions of the elastic domains. A procedure similar to the one
used in the development that goes from Eq.(26) or (30) to
Eq. (31), and with the details of the calculations, can be
found, for example, in[13] and [14].

Let us put forward some comments on the meaning of this
free energy by examining the conditions for its stability and
its form when the elongation of the elastic domains is uni-
formly frozen along the entire sample. The stability of the
elastic deformations requires that

K11 ù 0, K13 ù 0, K33 ù 0, K32 ù 0, K23 ù 0,

K21 ù 0, V2 ù 0.

OnceV2.0, there are no constraints onV1. So it can as-
sume negative values. Later, an experiment which suggests
that V1,0, implying that the corresponding structures are
metastable, is discussed. Furthermore, when the elongation
of the elastic domains becomes uniform, assuming the same

value at all points of the sample,h2→const, or¹W sh2d=0, the
above elastic energy becomes formally identical to the Frank
free energy of a nematic liquid crystal becoming, therefore,
restricted to the description of an orientational interaction
between neighboring elastic domains. As the difference be-
tween these two free energies is given by these local length
variations of the elastic domains, we must conclude that Eq.
(31) considers at least three kinds of contributions to the
energy stored in the elastic domains; the energy stored in
these local variations of elongations, the energy stored in the
interaction between the elements giving the orientational or-
der to the elastomer, and the interaction between them.

IV. PATTERN FORMATION

In this section, the theory developed above will be used to
describe a nonhomogeneous pattern formation phenomenon
found by Godinhoet al. [10] in an elastomeric thin film of
urethane/urea. It is important to observe that there are not
concluding experimental evidences showing that this elas-

tomer has in fact a nematic character; however, there are
some non-nematic systems that present periodic patterns
when submitted to an externally induced tension[15]. Since
the results that will be presented next have a strong agree-
ment with the experimental observations, the results found in
this section can be taken as an indication of the uniaxial
nature of the elastic phase observed in the urethane or urea
membrane. Although it recognizes that the nematic nature of
the urethane or urea membrane may not be confirmed by
forthcoming experimental research, this section remains as a
nontrivial exercise of application of the theory developed
above.

Godinhoet al. [10] have observed that when a thin film of
urethane/urea is submitted to an alternating sequence of de-
forming mechanical stresses, an unusual succession of struc-
tures is observed in the sample. Before the first application of
an externally induced deformation, the elastomer seems to be
isotropic and slightly translucent. But, once a mechanical
stress is applied, the film becomes transparent with a set of
textures observable by a polarizing microscope. A remark-
able aspect of this process concerns the behavior and form
assumed by these textures when the mechanical stress is
switched on and off. As it is shown in Fig. 1, when the elastic
film is stretched, a periodic structure(stripes) parallel to the
axis of the extending direction and with a wave vector per-
pendicular to the stretching direction is observed. These
stripes are similar to those observed by Kundler and Finkel-
mann in homogeneous aligned elastomers[8]. Nevertheless,
a fundamental difference has been found. When the mechani-
cal stress is removed, the elastomer does not return to its
initial condition. Even with its undeformed dimensions ap-
parently restored, a new set of structures(bands) arises in the
sample, and a texture consisting of periodic, long, black,
parallel, fine equidistant lines perpendicular to the direction
of the axis of the previous applied mechanical stress is ob-
served(see Fig. 2). Furthermore, this process is cyclic; when
the membrane is elongated again, the bands perpendicular to

FIG. 1. Texture observed, under a polarizing microscope, when
a stretching external force is applied on a membrane of urethane/
urea along the direction indicated by the arrow; its length indicates
20 mm. The stripes are extended along the direction of the external
force, having a well-defined periodicity along the perpendicular di-
rection.(Courtesy of Professor Dr. M. H. Godinho.)
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the external force disappear, and the stripes parallel to the
external force reappear. However, when the externally in-
duced deformation is again reduced to zero, the process is
inverted, the bands reemerge and the stripes disappear. It has
also been observed that the presence of one of these struc-
tures does not prevent us from observing the other, Fig. 3,
where an interval of external forces where they coexist can
be seen. That is, as the induced extension is being reduced,
and the stripes parallel to it are disappearing, the perpendicu-
lar bands begin to appear and, along a certain interval, they
live together.

Next, the use of the elastic energy proposed in Eq.(29) to
describe the textures found by Godinhoet al. [10] is dis-
cussed. In this study, only the lower order terms of the theory

will be considered. Notice that in that equationhW appears
having various different orders. For example, the term

coupled byK21, s¹W 3hW d2, is of a second order inhW , while the

term coupled byK13, shW ·¹W sh2dd2, is of a sixth order. Our
approximation restricts our study to the linear part of the
differential equations describing the theory. The effect of the
nonlinear terms will be considered in a forthcoming paper.
So, considering the lowest order inhW , and ignoring the
boundary effects described by the term coupled byK41, we
have

EF .
1

2
K11s¹W · hW d2 +

1

2
K21s¹W 3 hW d2 +

1

2
V1h2 +

1

2
e0smW · hW d2

+
1

2
ē1smW 3 hW d2+ p1smW · hW d¹W · hW + 2p2fsmW ·¹W dh2

− DlW · „hW 3 s¹W 3 hW d…g. s32d

As the deformation externally imposed to the membrane is
fixed along a constant direction, it can be assumed thatmW
=smx,0 ,0d. Minimizing the resulting equation with relation
to hW it can be shown that

− K11
]2hx

] x2 + sK21 − K11dS ]2hy

] xy
+

]2hz

] xz
D − K21S ]2hx

] y2 +
]2hx

] z2 D
+ mxsp1 − 2p2dS ] hy

] y
+

] hz

] z
D + hxse0

2mx
2 + V1d = 0, s33d

− K11
]2hy

] y2 + sK21 − K11dS ]2hx

] xy
+

]2hz

] yz
D − K21S ]2hy

] x2 +
]2hy

] z2 D
+ mxsp1 − 2p2d

] hx

] y
+ hysē1

2mx
2 + V1d = 0, s34d

− K11
]2hz

] z2 + sK21 + K11dS ]2hx

] xz
+

]2hy

] yz
D − K21S ]2hz

] x2 +
]2hz

] y2 D
+ mxsp1 − 2p2d

] hx

] z
+ hzsē1mx

2 + V1d = 0 s35d

give the solutions that minimize Eq.(32). This is a set of
linear coupled second-order differential equations containing
first-order derivatives that, independently of any boundary
condition, damp all oscillations presented by the solutions of
the system, eliminating any possibility of extended patterns.
Consequently, to describe textures these first-order deriva-
tives must be null, that is

] hy

] y
+

] hz

] z
= 0,

] hx

] y
= 0,

] hx

] z
= 0. s36d

FIG. 2. Texture observed, under a polarizing microscope, when
a stretching external force has been removed from the membrane
that have had a texture like the one described in the Fig. 1. These
new bands, observed in a situation where there is not an external
force, are perpendicular to the old ones being also one-dimensional
and periodic. The line indicates the direction of the preexisting
force; its length indicates 20mm. (Courtesy of Professor Dr. M. H.
Godinho.)

FIG. 3. Texture observed, under a polarizing microscope, show-
ing a combination of both textures observed in Figs. 1 and 2. To
produce this texture the elastomer has been initially stretched in
such a way that the texture of Fig. 1 is obtained. Afterwards, the
external force has been gradually reduced and, before it reaches at a
null value, the two textures are found living together. The length of
the arrow indicates 20 mm.(Published with authorization of Proof.
Dr. M. H. Godinho.)
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As all these terms depict polarizations of the NE, the im-
position of these conditions is equivalent to affirm that, in the
sample the geometry acquired by the induced textures as-
sumes a configuration that prevents any local polarization.
As shown further in this study, this is the origin of the one-
dimensional regularity observed in these patterns. So, by
substituting these conditions in the above-differential equa-
tions, that system of differential equations becomes

− K11
]2hx

] x2 + hxsV1 + e0vmx
2d = 0, s37d

− K21S ]2hy

] x2 +
]2hy

] y2 +
]2hy

] z2 D + hysV1 + e1mx
2d = 0, s38d

− K21S ]2hz

] x2 +
]2hz

] y2 +
]2hz

] z2 D + hzsV1 + e1mx
2d = 0. s39d

That constitutes, in this approximation, a set of differen-
tial equations describing uncoupled elastic deformations.
These deformations are coupled by a different set of elastic
constants. The deformationhx is coupled throughK11, which
according to Eq.(31) describes a kind of splay deformations
in the nematic elastomer. Whilehy and hz are coupled
through K21, which describes a kind of twist deformation,
meaning that the deformations occurring in the sample have
two different topologies. Likewise, the constants coupling
the imposed global elastic deformation with the deformation
vector,e0 ande1, also present the same difference,e0 being
the susceptibility attributed forhx and e1 the susceptibility
attributed forhy and hz. In summary, the effects of the ex-
ternally imposed deformationmx are determined by the rela-
tive values ofV1, e0, e1, K21, andK11 and, as they come from
different basic elastic deformations, different topologies for
the corresponding patterns will be observed. Let us study the
relative values of these constants by imposing that the result-
ing theory may describe the Godinho effect. First, it has been
found that even when the external force vanishes, some tex-
tures are still observed on the bulk along the directioneWx, that
is hxÞ0 whenmx

2→0. As, under these conditions, Eq.(42)
becomes

− K11
]2hx

] x2 + V1hx = 0,

and the stability of the system requires thatK11.0, the
unique way to admit the observation of the bands periodi-
cally distributed along theeWx direction whenmx→0 is to
assume thatV1,0. So, by makingV1→−K, K.0 we have
that

− K11
]2hx

] x2 − hxsK − e0mx
2d = 0.

Furthermore, to explain the disappearance of the periodicity
of hx alongeWx asmx

2 increases, we must havee0.0. So, once
the elastomer is distended, the periodicity along theeWx direc-
tion will be given by

kx
2 =

sK − e0mx
2d

K11
. s40d

As a result, as the externally induced deformationmx in-
creases, the periodicitykx diminishes in such a way that
when it becomes greater thanmx

2.K /e0, the real solutions
become hyperbolic and no periodicity alongeWx will be ob-
served; exactly what has been observed in the Godinho ex-
periment.

In order to study the behavior of the deformationshy and
hz, described by Eqs.(38) and(39) the boundary conditions
acting on the system must be considered. A detailed study of
the boundary conditions acting on the system on these con-
ditions can be found in[8]. It will be assumed, due to the
connection of the membrane to itsx borders,x=0 and x
=Lx, being not tied along itsy andz borders we must have

] hy

] x
=

] hy

] z
= 0 s41d

leading to

K21
]2hy

] y2 + hysK + e1mx
2d = 0. s42d

These equations show that, as the stability of the system
requires thatK21.0 the periodicities observed along theeWy
direction, the stripes, can be explained if it is admitted that
e1,0. With these hypotheses, and making the changesV1
→−K, with K.0, e1→−ē1 with e1.0, and e0.0 it is
found that Eq.(38) becomes

K21
]2hy

] y2 + hysK − ē1mx
2d = 0,

which has a non-null solution, with a periodicity given by

ky
2 =

e1mx
2 − K

p2K21
. s43d

In Fig. 4 a superposition of the graphs generated by Eqs.

FIG. 4. Graphic representation of Eqs.(40) and (43) where the
region where stripes and bands live together is detached.
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(40) and (43) is shown. This figure shows that there is a
range of values of the external force where stripes and bands
can be found together, exactly what has been found experi-
mentally.

V. FINAL REMARKS AND CONCLUSION

The main result of this paper has been the elaboration of a
mean field elastic theory describing properties of a uniaxial
nematic elastomer. The construction of an order parameter
for the elastomeric nematic-isotropic phase transition has
been essential to such an approach. This order parameter
generalizes the corresponding order parameter of the usual
nematic liquid crystals, which, besides the description of the
degree of alignment of the nematic domain along a given
direction, it also describes the elongation of the elastic do-
main when the sample is submitted to a deformation. At the
end it has been assumed that the elastomeric sample of
urethane/urea discovered by Godinhoet al. presents an
isotropic-uniaxial phase-transition being, therefore, de-

scribed by the theory proposed above. Results show a good
agreement between the theory and the experiment.

As a final conjecture, let us make a brief digression on the
range of the theory that has been developed in this study.
Notice that the theory here developed has a unique funda-
mental requirement: the existence of a phase transition pre-
senting an isotropic-uniaxial symmetry change. Cited as an
example, nowhere along the development of the theory has
the nematic origin for the uniaxiality presented by one of the
phases of the sample been used. Consequently, the theory
may be applicable to every elastic material with an isotropic-
uniaxial phase transition, not being restricted to isotropic-
nematic phase transitions.
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